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By direct calculation of the electron energy of a metal crystal as a function of elastic strain and tempera­
ture, it is shown that the elastic constants can exhibit a T2 dependence at low temperatures. This tempera­
ture dependence arises from the displacement of the Fermi surface during strain and the simultaneous transfer 
of electrons across Brillouin zone boundaries. The results for face-centered cubic and body-centered cubic 
metals are obtained in terms of the energies of symmetry points in the Brillouin zone and the electron 
density of states and its first and second derivatives with respect to energy. The magnitude and algebraic 
sign of the temperature dependence are shown to depend critically on the shape of the Fermi surface and 
the electron density distribution. It is also shown that the form of the electron contribution to the tempera­
ture dependence of the elastic constants is directly analogous to that derived for the thermal variation of 
the paramagnetic susceptibility of metals at low temperatures. 

1. INTRODUCTION 

THE problem of the calculation of the elastic con­
stants of solids has proceeded largely from the 

studies of Born and co-workers.1 In this approach, a 
model of generalized forces between atoms is used to 
obtain interrelations between the atomic force constants 
at absolute zero and the macroscopic elastic constants. 
The temperature dependence of the elastic constants 
consequently arises from the variation of the lattice 
potential energy due to anharmonicity, or alternatively 
the temperature dependence of the elastic constants is 
described in terms of the phonon-phonon interactions 
due to the anharmonicity of the lattice vibrational 
frequencies.2 

The Born approach, while a good approximation for 
insulators and perhaps semiconductors, is inadequate 
for metals. The total electron energy of a metal crystal 
arises from the interaction of the valence electrons with 
each other and with the ion-cores of the metal atoms. 
This interaction determines the phonon vibrational 
frequencies at absolute zero and, hence, the velocity of 
sound waves in the crystal.3,4 The elastic constants are 
obtained directly from the density of the metal and the 
sound velocities.4 An alternative approach has been to 
obtain the elastic constants by the direct calculation of 
the electron energy as a function of strain. This ap­
proach is discussed by Wigner and Seitz,5 Fuchs,0 

Leigh,7 and others.8,9 

The thermal variation of the elastic constants of 
metals thus arises from the temperature dependence 

* This work was initiated at the Union Carbide Research Insti­
tute, Tarrytown, New York, and completed at the American-
Standard Research Division, New Brunswick, New Jersey. 
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of the electron energy due to the Fermi-Dirac distribu­
tion of electrons, and the temperature dependence of 
the lattice energy due to the anharmonicity of the 
crystal lattice vibrations. 

Recent theoretical calculations by von Roos10'11 on 
the plasma theory of electron-phonon interactions in 
metals have shown that the electrons contribute to the 
temperature dependence of the renormalized longitudi­
nal sound frequencies. Thus, the temperature depend­
ence of ultrasonic sound velocities, and hence the elastic 
constants, may be expected to arise phenomenologically 
from the temperature dependence of the renormalized 
sound frequencies due to the electrons. Alers and 
Waldorf,12 using a very sensitive ultrasonic technique, 
have found that in addition to a term in T* due to 
lattice anharmonicity, the elastic constants of vanadium 
and niobium exhibited a T2 dependence at temperatures 
in the liquid-helium range. Alers13 further calculated 
that the estimated contributions from lattice anhar­
monicity were too small to be experimentally observed 
in the temperature range at which the T2 dependence 
was found. 

It is the purpose of this article to investigate the 
nature of the electron contribution to the temperature 
dependence of the elastic constants of cubic metals. It 
would perhaps be preferable to perform the calculations 
of the thermal variation on the basis of the plasma 
theory of electron-phonon interactions in order to pre­
serve a logical progression of phenomenological effects. 
The limitations of a plasma theory and the present 
inability to treat shear distortions by this approach 
have directed our attention to calculating the electron 
energy of a metal crystal as a function of temperature 
and strain.5"-9 As a result of these calculations we have 
found that the elastic constants can exhibit a T2 de­
pendence at low temperatures due to the electrons. The 

10 O. von Roos, Phys. Rev. 120, 1641 (1960). 
11 O. von Roos, Jet Propulsion Laboratory Report, TR-32-106, 

1961 (unpublished). 
12 G. A. Alers and D. L. Waldorf, Phys. Rev. Letters 6, 677 

(1961). 
13 G. A. Alers (private communication). 
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magnitude and algebraic sign of the temperature de­
pendence were found to depend critically on the shape 
of the Fermi surface and the electron density distribu­
tion. A model for the temperature dependence of the 
elastic shear constants of cubic metals is derived in 
Sec. 2. A derivation of the temperature dependence of 
the elastic bulk modulus for both isothermal and 
adiabatic strains is presented in Sec. 3. In Sec. 4 it is 
shown that the form of the temperature dependence of 
the elastic constants is directly analogous to that de­
rived for the thermal variation of the paramagnetic 
susceptibility of metals at low temperatures. Finally, 
in Sec. 5, the results of the article are summarized and 
conclusions drawn. 

2. ELECTRON CONTRIBUTION TO THE ELASTIC 
SHEAR CONSTANTS AT LOW TEMPERATURES 

A. The Elastic Shear Constants 
In this section, we consider the two elastic shear con­

stants of cubic crystals, C and C". The shear constant 
C = C44 may be represented by volume conserving 
strains which change the crystal symmetry by extension 
in the (111) direction accompanied by that contraction 
in the perpendicular plane necessary to keep the volume 
constant. The shear constant C=|(Cn—Cu) repre­
sents volume conserving strains which change the 
crystal symmetry by extension in the (001) direction 
accompanied by that contraction in the perpendicular 
plane necessary for volume conservation during shear. 
The shear constants C and C correspond to strains 
which do not change the volume of a crystal during 
deformation, and, hence, are not dependent on whether 
the deformation is isothermal or adiabatic. 

The internal energy of the electrons in a metal at low 
temperatures is given by the relation14 

U(T) = U(0)+NV(T)i(irkTyg(80). (1) 

In Eq. (1), U(0) is the internal energy at absolute zero, 
N is Avogadro's number, k is the Boltzmann constant, 
and V is the atomic volume. The parameter g(60) is 
the total number of electron states per unit energy per 
unit volume, evaluated at the Fermi level 60 at absolute 
zero. The spin factor of 2 is included in the expression 
for g(8o). The result of Eq. (1) is independent of any 
assumed model for the energy dependence of the density 
of states.14 It is for this reason that we have expressed 
the internal energy in the form given by Eq. (1) rather 
than assuming spheroidal energy surfaces and applying 
the Fermi-Dirac integral14 to obtain the temperature 
dependence. Since the adiabatic elastic shear constants 
are second derivatives of the internal energy with re­
spect to strain, at constant entropy, the absence of 
volume change during shear considerably simplifies the 
differentiation of Eq. (1). If we let M represent C or 
C and X an arbitrary strain parameter corresponding 

14 R. H. Fowler, Statistical Mechanics (Cambridge University 
Press, London, England, 1936), 2nd ed. 

to C or C", the temperature dependence of the elastic 
shear constants is expressed directly as second deriva­
tives of the total density of states at the Fermi level 
with respect to strain. This is given by the relation: 

7(0) / W o ) \ 

V{T) \ dX* /o 

where the subscript zero indicates that the derivative 
is evaluated at zero strain. 

B. Shear Distortion and the Electron 
Distribution 

The calculations in this section and in Sec. 3 are con­
sidered for the case in which the deformation takes 
place slowly with respect to the electron relaxation 
time. As a consequence, the electron-phonon scattering 
processes have time to keep the electrons in equilibrium 
on the Fermi surface during strain. When a metal is 
sheared at constant volume the distortion of the lattice 
in real space causes a distortion of the Brillouin zone 
in reciprocal space. For those metals for which the 
Fermi surface is presumed to be a sphere lying wholly 
within the first Brillouin zone, the effect on the Fermi 
surface of movements of the bounding planes of the 
zone is small. As a consequence, the corresponding con­
tribution to the elastic shear constants is negligible.7 

For other metals the distortion of Brillouin zone bound­
aries, particularly in the case of electron overlap across 
or contact with zone boundaries, has an appreciable 
effect.7"9 

The Brillouin zones for the body-centered cubic and 
face-centered cubic lattices, with points of symmetry 
designated, are shown in Figs. 1 and 2, respectively. 
During shear there is a shift of the electron energy sur­
faces near the Fermi surface, accompanied by electron 
transfer from certain positions on the Brillouin zone to 
others, in order that the electrons can occupy states of 
lower energy and maintain an equilibrium configura-

FIG. 1. Brillouin zone for the body-centered cubic lattice 
with points of symmetry shown. 
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FIG. 2. Brillouin zone for the face-centered cubic lattice 
with points of symmetry shown. 

tion. In addition, the curvature of the energy surfaces 
may change in order that the gradient of the energy 
vanishes at a point of symmetry in the sheared state. 
This corresponds to a change in the electron effective 
mass during shear. 

We now make the assumption, as a first approxima­
tion, that during shear the energy at each overlap or 
hole symmetry point moves rigidly with the Brillouin 
zone boundary and that the electron effective mass is 
not a function of strain.7-8 Let us now consider the case 
where electron overlap across zone boundaries or con­
tact with zone boundaries is present. We define by 
gi(fi) the contribution to the total density of states at 
the Fermi level, g(#o), from those overlap or hole states 
with energy E#, i refers to the symmetry point of the 
zone and j refers to the number of equivalent pairs in 
the sheared state. We thus obtain the relations 

fdu\ /dgi<ji)\ _/dgiW\ /du\ 

\ dX Jo \ da )0\dX/ 
(3) 

and 

'<Pgi(p)\ f<Pgi(p)\ /dfx\2 /dgi(u)\ /(Pt*\ 

dX2 

\ _ (dlgiK»)\ /dvy /dgiW\ / tffc \ 

/o \ du2 / o U / o \ du / o W v o ' 

where X represents a shear strain parameter corre­
sponding to C or C". We must now evaluate the first 
and second derivatives of the energies Ey and So in 
order to use Eq. (4) to solve for the second derivative of 
the total density of states at the Fermi level with re­
spect to strain, as given in Eq. (2) and, hence, obtain 
the temperature dependence of C and C. 

C. Strain Dependence of the Electron Energies 

In order to evaluate the strain dependence of the 
Eij and So we must consider how the reciprocal lattice, 
and hence the Brillouin zone, changes as the metal 
undergoes shear. The strain energy, per unit volume, 
of a cubic lattice is given in terms of the three inde­
pendent elastic constants, Cn, Cu, and C44, by the 

equation 

W = W0+idi (ex
2+ev

2+ez*)+Cn (exez+ ezex+ exey) 

+iC 4 4 (7i 2+72 2+73 2 ) , (5) 

where ex, ey, ez are the diagonal components of the 
strain tensor and the 7*s are the off-diagonal terms 
representing changes in angles between the principal 
axes of the crystal. For convenience in calculating con­
tributions to the strain energy of the solid under the 
appropriate shear, it is expedient to write the lattice 
vectors in terms of a strain parameter X=%, rj. 

For the body-centered cubic lattice, the direct and 
reciprocal lattice vectors for the shear corresponding to 
C may be written in terms of a strain parameter t\ as 

a1=ia(l /J5) ( - i f 1 , 1,1), 

a ,= i a ( l / 5 ) ( l , - l , i r 1 ) , 

a3= \a(\/B){\,\,-rr'), 
h= (,•/<*) ( i /#) Or*-1, l+ir1, l+ir1) , 
£2= O r / a X l / ^ X l + i T 1 , T 2 - l - 1 + T 1 ) , 

h= Or/a) (1/5*) (1+iT1 , 1+rr1, T 2 ~ l ) , 

with B—\{2>rr1—rr3-\-2). The shear constant C is 
then given by 

C=HdW/df)0, (7) 

where at zero strain rj= 1. For C", the direct and recip­
rocal lattice vectors for the body-centered cubic lattice 
are written in terms of a strain parameter £ as 

a i = l a f " » ( - l , l , r - 1 ) , 

a2=fa£1 / 3(l , - l , * " 1 ) , 

a s ^ a ^ O U . - r 1 ) , 

ft1=ifl(2x/a){1»(0,l>f)> 

i1=(2x/a)e-1/»(l,0>8, 
62=0Va)r1 /3(l,l,O). 

The shear constant C is then given by 

c=I(WM')», 

(8) 

(°) 
where at zero strain £= 1. 

The direct and reciprocal lattice vectors for the face-
centered cubic lattice for shears corresponding to C and 
C will not be tabulated here as they have already been 
given by Leigh.7 

The reciprocal lattice vectors in the sheared state 
are used to determine (dEij/dX)o and (d2Eij/dX2)o for 
C and C for both the body-centered cubic and face-
centered cubic lattices. Thus, one obtains 

and 

'dEiA fdK ( ^ \ / ^ ) ( ^ \ ( 1 0 ) 

\dxJo \dKijJo\dX Jo 

/d2E{j\ /<PEu\ fdKi^ a\ (dKifs* ZdEiA /d'KiA 

\dX2Jo \dKi*)o\dX Jo \dKiJo\ dX2 JY 
(ID 

file:///dxJo
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where K^ is a reciprocal lattice vector from the origin 
of the Brillouin zone to the point of symmetry. For 
both the body-centered cubic and face-centered cubic 
lattices, it was found that 

and summation over all ij gives the relations 

ZuidKij/dX^O (12) 

for all i. The vanishing of the sum of (dKij/dX)o for 
all i follows from the symmetry of the sheat distortion 
for C and C". As a consequence of Eq. (12) it is found 
that 

Zii(dEa/dX)^0. (13) 

In addition, from symmetry arguments,15 

(d6/dX)0=0. (14) 

Thus, it is found that 

Zi(dgiQx)/dX)o=0 (15) 

and that there is no change to first order in the total 
density of states at the Fermi level. 

In order to evaluate the second derivative of the 
Fermi level, #o, with respect to strain, we make use of 
the relation for the number of overlap electrons or 
holes per unit volume, w#, in the sheared state. This 
relation is given by 

gi(a)da, (16) 

/dtiiA 

ij \dX / o i 

and 

£ ( — ) = E . 
a \dX2/o i 

<to 
dX/o 

M 
W l V o 

fdEiA 

-HUM 
ij \ 

(17) 

d/x 

.dX* 

dEij\ 

dX/o 
•0. (18) 

From Eq. (18) one obtains 

1 r /(PEit\ 

.dX*),, i(p) * \ < 

- E 
'dgiip) 

dn 

dEiA* 

dX/J 
(19) 

f 
Jo 

where a=E—Eij, the plus refers to overlap electrons, 
and the minus to holes. Since the total number of 
overlap electrons minus the total number of holes is a 
constant, independent of the state of strain of the 
crystal, differentiation of Eq. (16) with respect to X 

D. Tempera ture Dependence of C and C 

We can now evaluate the sum of the [d2gi(n)/dX2~]o 
of Eq. (4) by means of Eqs. (10)-(19). In order to 
simplify the discussion to be given in Sec. 4, we will 
assume that the first and second derivatives of E# are 
proportional to E#, the constant of proportionality 
being determined uniquely by the geometry of the 
Brillouin zone. The expressions for the temperature 
dependence of the elastic shear constants of the body-
centered cubic lattice may now be expressed in terms 
of the energies of the symmetry points shown in Fig. 1, 
as follows: 

C(T) = C(0) 
7(0) NbrkT)*l'£i2Eigi(pL')_ /dgM) 

V(T) 18 

WjgiW) /dg<W)\ 

igifa') { V dp! / o 

and 

C ' ( r ) = C"(0> 
V(T) 

* V d/x / o LV djjLN'2 /Q J^igi(ji)\ < W 'o i V d\x' / o J 

+i*JY5^2) __!_(**2) E (*<=2) 1} (*> 
LV dtp* /o £<«<G»)\ drf /o « V dix' /oJ) 

/dgiW)\ 

' V dp! / 0 

7(0) N(xkT)* f Zi 2Eigi{]x') _ /dg{(jx') 

Z» gi(p') 

i \ dfl' / o LV dnN
2 / o J^i gi(tf)\ dfJLN / 0 * V dfX / 0 J 

+MJY**>) _ _ ^ « z(*«)ij, m 
LV dfxn2 /Q ^eigi(p)\ d\in / 0 * V dp / Q J J 

where now tx'—po—Ei. 

15 A. B. Pippard, Proc. Roy. Soc. (London) A257, 165 (1960). 
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Similarly the expressions for the temperature dependence of C and C for the face-centered cubic lattice may now 
be expressed in terms of the energies of the symmetry points shown in Fig. 2, as follows: 

7(0) N(irkT)2 

C - C ( O ) — -\2EL 

V(T) 18 

&L(P) V (dgi(p)\ /dgL(fi) 

+ 2EX 

' gx(p) , 

•ULigiip) 

X / gifa) { ^ dp 

fdgi(p)\ fdgxip) 

dp 

\ /dgL{fi)\ 1 

/0 \ djJLL / o J 

\ /dgx{p)\ 1 

/o V dpx /oJ 

14 

5 

girGO fdgi(p)\ (dgw(p)\ 
L—4 

and 

C'=C'(0)-
7(0) N(irkT)2 

V(T) 

22 
W 

18 

FGO 

_ /dgi{p)\ /dgw{p)\ "1 

* \ dp /Q V ^MTF / O J 

» \ 1 fdgLip)\ /dgi(jx)\ 

L \ ^ L 2 /O £*£*(/* A M̂L /0 i \ dfJL J 

gM fdgL(ji)\ (dgi(p)\ "I ( ^ [" gxGO ^ fdgi{p)\ /dgx(ji)\ 1 

(22) 

r £UM) /dgLW\ /dgi[fi)\ • 

5 L X i - g ^ ) 

where again pf—fio~Ei. 

»(M) 

^ 

^TFW> 

+ 2^x 

+2Ex 

d?gx(p) 

z{p) /dgi(p)\ 

^-Higi(fj) * \ dp /o 

dpx2 /o X)*£*(M)\ ^MX 

2 r f&gwip) 

25 </jU 

1 /dgx(p)\ /dgi(p)\ 

Zi(p)\ dpx Jo i \ dp J 

/ n * \ dlJL J 

1 /dgw(p)\ _ /dgiGO 

dp 

i 

dp 
(23) 

3. ELECTRON CONTRIBUTION TO THE ELASTIC 
BULK MODULUS AT LOW TEMPERATURES 

A. The Elastic Bulk Modulus 

In this section we consider the elastic bulk modulus of 
cubic crystals, B = %(Cu+2Ci2). The bulk modulus cor­
responds to dilatational strains which leave the crystal 
symmetry unchanged. The isothermal bulk modulus is 
obtained by differentiation of the Helmholtz free en­
ergy, A, of a solid with respect to volume at constant 
temperature. The electron contribution to the Helm­
holtz free energy at low temperatures is given by14 

Brillouin zone. This arises from the volume change 
accompanying dilatation with corresponding first-order 
changes in the total density of states and the Fermi 
level, as well as second-order effects. We will consider 
in this section the situations in which the Fermi surface 
is a sphere lying within the first Brillouin zone as well 
as the case of electron overlap across zone boundaries 
or contact with zone boundaries. 

We proceed in a manner similar to that used in Sec. 
2, obtaining the relations analogous to Eqs. (3) and (4): 

A(T) = U(0)-NV(X)fokT)*g(130), (24) \ dV Jo \ dix' A w A / o 

where the notation is the same as that used in Eq. (1). 
The isothermal bulk modulus is given by 

and 

BT=V(d2A/dV*)T. (25) 

(d?Upf) 

dp 

du2\ /d2gi{p)\ _/d?giW)\ M r \ /dgj{p')\ /. 

\ dV2 Jo \ da'2 A W / o \ dp' JX 

fdgiipf)^ 

dp' 

fdW\ 

\dV2)o 

The adiabatic bulk modulus, Bs> can be obtained by 
differentiation of Eq. (1) and is given by 

(28) 

BB=V(&U/dV*)B. 

B. Dilatational Distortion and the 
Electron Distribution 

(26) 

Contrary to the situation discussed in Sec* 2, dila­
tational distortion gives rise to an electron contribution 
to the elastic bulk modulus and its temperature depend­
ence even for those metals for which the Fermi surface 
is presumed to be a sphere lying wholly within the first 

where for the case of electron overlap across zone bound­
aries or contact with zone boundaries, pf=fio—Ei and i 
refers to the symmetry point of the zone. For the case 
of a spherical Fermi surface, p—fio and i has no sig­
nificance. In order to evaluate the first and second de­
rivatives of the Fermi level, £0, with respect to volume 
we make use of analogous relations to Eq. (16) to find 
for the case of electron overlap 
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1 r/dfc 

and 

W/ 0 * \ <V A 

stant entropy. The equation for the electron entropy, 
S, is given by14 

X WA' 
/<*g<(*0\ /dE 

• -

\ <V / O W 

+E( ) (—)+—E*, 

s=iVF(r)n6r£)W. 
By differentiation of Eq. (1), we obtain 

fdU\ dU(0) 

(35) 

\dV/s dv 

(30) <dgfa) T /dg(j3o)\ 2 /dT\ "J 

where «t- are the number of electrons or holes related to 
symmetry points of type i. For the case of a spherical Differentiation of Eq. (35) gives the relation 
Fermi surface: 

*#o\ 1 

and 
^ 7 / o V*g(j3o) 

In 1 w /d?Po\ 'In 1 w 1 /̂ g(/5o) 

W / 0 ~ > g ( / 3 0 ) F4[g(/?0)]s\ # 0 ) . • 

(31) 

(32) 

where n is the total number of electrons in the Fermi 
sphere. 

C. The Isothermal Bulk Modulus 

The temperature dependence of the isothermal bulk 
modulus due to the electrons is obtained from Eqs. 
(24) and (25) as 

V(T) 
BT=B(0) NV{T)\{TkTY 

V(0) 

X [( dV(0)/9 \dV(0) 

/<PgQgo)\ "I 

W ( 0 ) v j ' 
(33) 

where B(0) is the bulk modulus at absolute zero. For 
the simple case of a spherical Fermi surface we obtain, 
using Eqs. (27), (28), (31), and (32), 

BT=B(0) 
V(T) N 

7(0) V(T)*\Zg(P*)l' 

Xi(T*D2 — • - T T I T — ) h ( 3 4 ) 

The temperature dependence of BT for the case of elec­
tron overlap may be obtained by suitable substitution 
of Eqs. (27)-(30) into Eq. (S3). 

D. The Adiabatic Bulk Modulus 

The derivation of the temperature dependence of the 
adiabatic bulk modulus, Bs, due to the electrons is 
somewhat more complicated than the straightforward 
method for the isothermal bulk modulus. This arises 
from the variation of temperature with volume at con-

/dT\ ( l 

\dVJs 

1 /dg(fi0) 

V g03o)V dV ) . ) • 
(37) 

Successive differentiation of Eq. (36), using the result 
of Eq. (37), yields the electron contribution to the tem­
perature dependence of the adiabatic bulk modulus as 

V(T) r 1 / 

V(X)/dg(0o) 

g(3o)V dV 

dgWo)\ 

LV(T) \dV(0) ) , 

\ 2 /d2g(Po)\ 1 
)-lV(T)[-L—) I (38) 

For the simple case of a spherical Fermi surface we ob­
tain, using Eqs. (27), (28), (31), and (32), 

V(T) l In 

1 /dg(0o)\ 1 / n \ 
Xg~(^)\d^~)a~~2\V(T)g(^)) 

LA daj / 

3 / ^ 0 3 o ) y - | 

g(j80)\ dfi9 )J 
(39) 

The temperature dependence of Bs for the case of elec­
tron overlap may be obtained by suitable substitution 
of Eqs. (27)-(30) into Eq. (38). 

4. RELATION TO THE PARAMAGNETIC 
SUSCEPTIBILITY AND THE 

FERMI SURFACE 

A. Temperature Dependence of the 
Paramagnetic Susceptibility 

The temperature dependence of the paramagnetic 
susceptibility, x> of metals at low temperatures has 
been derived by Stoner16 as 

x-x(o)+A(x*r)2M — — 
L d80

2 

1 fdg(po) 

«(ft>A d(3Q )']• (40) 

16 E. C. Stoner, Proc. Roy. Soc. (London) A154, 656 (1936). 

file:///dVJs
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In Eq. (40), x(0) is the paramagnetic susceptibility at 
absolute zero, /z is the Bohr magneton, and the other 
terms are identical to those used in Eq. (1). Attention 
is now called to the striking similarity of Eq. (40) to 
Eqs. (20)-(23), (34), and (39). The term in square 
brackets in Eq. (40) is identical to the equivalent term 
in Eq. (34), and with the exception of numerical fac­
tors, to that in Eq. (39). In addition, the dominant 
terms of Eqs. (20)-(23) are those arising from electron 
transfer during shear distortion and are represented by 
the square of the energy of a point of symmetry. This 
term is modified by a factor equivalent to the term in 
square brackets of Eq. (40). 

On the basis of the above discussion, it is seen that 
the sign and magnitude of the electron contribution to 
the temperature dependence of the elastic constants, 
similar to the paramagnetic susceptibility, is deter­
mined by the first and second derivatives of the elec­
tronic density of states with energy, evaluated at the 
Fermi level. The temperature dependence of the elastic 
constants may exhibit positive or negative coefficients 
dependent upon whether the Fermi level is at a mini­
mum or maximum of the electron density of states, 
respectively. Kriesmann and Callen17 have interpreted 
the positive temperature coefficient of the paramagnetic 
susceptibility of chromium on the basis of the Fermi 
level lying near a minimum of the theoretical density of 
states curve. 

With the exception of the case of a spherical Fermi 
surface, one would not expect an exact correlation be­
tween the paramagnetic susceptibility, which is a 
second-rank tensor property, and the elastic constants, 
which are fourth-rank tensor properties. This is obvious 
from an investigation of the relations for C, C", BT, and 
B$ for the case in which contact with zone boundaries 
or electron overlap across zone boundaries is present. 
In this case it is seen that the shape of the Fermi surface 
may influence the sign and magnitude of the tempera­
ture dependence of the elastic constants. 

B. Elements with Spherical Fermi 
Surfaces: Sodium 

As an example of an element for which it is assumed 
that the Fermi surface is spherical we take the case of 
sodium. Since we assume a spherical Fermi surface, 
there is no contribution from the electrons to the tem­
perature dependence of C and C and the electrons con­
tribute only to the temperature dependence of the 
elastic bulk modulus. We obtain g(/3o) from electron 
specific heat data18 as 0.764 eV"1 per atom and a value 
for #o of 3.5 eV from measurements of the soft x-ray 
emission spectra by Skinner.19 A value of J3(0) of 
5.32X1010 dyn/cm2 is obtained from the experimental 

17 C. J. Kriessman and H. B. Callen, Phys. Rev. 94, 837 (1954). 
18 J. G. Daunt, Progress in Low Temperature Physics, edited by 

C. J. Corter (North-Holland Publishing Company, Amsterdam, 
1955), Chap. XI. 

19 H. W. B. Skinner, Trans. Roy. Soc. (London) A239, 95 (1940). 

TABLE I. Electron contribution to the temperature dependence 
of the elastic constants of sodium, copper, aluminum, and 
vanadium. 

Element 

Na 

Cu 

Al 

V 

a See Ref. 

Modulus 

BT 
B8 
C 

a BT 
Bs 
C 

a C 

a 
c 
a 

12. 

Calculated 

-4.98X10-1 0 

-9.94X10-* 
0 
0 

-3.97X10"11 

-4.84X10"10 

-1.04X10~10 

0 
-6.15X10"9 

-2.90X10-* 
~io-6 

~io-6 

a (°K-*) 
Experimental* 

1.03 X10~6 

0.46X10"6 

measurements of Quimby and Siegel20 at 80 °K ex­
trapolated by Stern2 to absolute zero. A parabolic 
density of states versus energy distribution of the form 

g(E)^\it\2mlWfm* (41) 

is assumed in order to calculate the first and second 
derivatives of g(E) with respect to E. The results were 
calculated in the form 

M(T) = M(0)(l-aT2), (42) 

where M represents an elastic constant. The results for 
sodium are tabulated in Table I. 

C. Contact with Zone Boundaries: Copper 

There has been extensive study of the Fermi surface 
of copper by galvanomagnetic and magnetoacoustic 
measurements.21 A model of the Fermi surface of copper 
is shown in Fig. 3. As seen from Fig. 3, the Fermi sur­
face contacts the Brillouin zone boundary at the hex­
agonal faces of the Brillouin zone. Thus, there are no 
contributions to the total density of states at the 
Fermi level from symmetry points equivalent to points 
X and W of Fig. 2. Consequently, we may omit all 
terms in X and W in consideration of the elastic shear 
constants C and C of Eqs. (22) and (23), respectively. 
Investigation of Eq. (23) shows that there is no con­
tribution to the temperature dependence of C from the 
conduction electrons. For the shear constant C there is 
a contribution to the temperature dependence arising 
from the term in EL

2 in Eq. (22). We obtain g(/30) from 
electron specific heat data18 as 0.320 eV"1 per atom and 
a value of £o of 6.8 eV from the x-ray emission spectra 
results of Skinner.22 A value of C(0) of 8.17X1011 

dyn/cm2 is obtained from the experimental measure­
ments of Overton and GafTney.23 In addition, we assume 

20 S. L. Quimby and S. Siegel, Phys. Rev. 65, 293 (1938). 
21 D. Shoenberg, The Fermi Surface, edited by W. A. Harrison 

and M. B. Webb (John Wiley & Sons, Inc., New York, 1960), 
pp. 74-83. 

22 H. W. B. Skinner, Phil. Mag. (7) 45, 1070 (1954). 
23 W. C. Overton, Jr., and J. Gaffney, Phys. Rev. 98, 969 (1955). 
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FIG. 3. The Fermi surface A 
of copper. ]/ 

\ I 

that EL lies so close to /30 that we may approximate EL 
by assuming that EL~fio. In a manner analogous to 
that used for sodium, we estimate the temperature de­
pendence of BT and Bs using the available experi­
mental data18-22 and the value of B(0) of 14.1X1011 

dyn/cm2 obtained by Overton and GafTney.23 The re­
sults are tabulated in Table I. 

D. Overlap Across Zone Boundaries: Aluminum 

Theoretical calculation of the electronic contribution 
to the elastic shear constants of aluminum have been 
performed by Leigh.7 Leigh assumed electron overlap 
across the hexagonal and square faces of the Brillouin 
zone of Fig. 2 and the absence of holes at the corner 
points, W. On the basis of the number of approxima­
tions involved in the calculations of Leigh, it is quite 
difficult to place much confidence in the relative con­
tributions to the elastic shear constants and to the 
Fermi surface obtained from this treatment.9 We, 
therefore, use the calculations of Leigh solely to obtain 
an estimate of the order of magnitude of the electron 
contribution to the temperature dependence of the 
elastic shear constants. The elastic constants, C and C" 
at 0°K are obtained from the work of Sutton,24 as 3.09 
X1011 and 2.60X1011 dyn/cm2, respectively; the other 
parameters in Eqs. (22) and (23) being obtained from 
the work of Leigh. The results of these calculations are 
tabulated in Table I. 

E. Comparison with Experiment: Vanadium 

Since no information is available at present about 
the Fermi surface of vanadium, it is quite difficult to 
calculate the electron contribution to the temperature 
dependence of the elastic constants. We can show, how­
ever, that the order of magnitude of the T2 dependence 
of vanadium can be predicted on the basis of experi­
mental evidence. A curve of the energy dependence of 
the electron density of states for bcc transition metals 

24 P. M. Sutton, Phys. Rev. 91, 816 (1953). 

has been obtained by Cheng et a/.25,26 from measure­
ments of the electron specific heat of transition metal 
alloys. From the results of Cheng and co-workers we 
estimate the slope and curvature of the electron density 
of states at the Fermi level as 7.7 and 33 eV~3 per atom, 
respectively. The density of states for vanadium at the 
Fermi level is also given by Cheng26 as 3.908 eV""1 per 
atom. We obtain 00 once again from the experimental 
results of Skinner as 7.74 eV and for purposes of quali­
tative calculation assume EN, EH, and Ep are approxi­
mately equal to PQ. The values of the elastic shear 
constants C and C" at absolute zero are obtained from 
the data of Alers and Waldorf,12 as 4.60X1011 and 
5.65X1011 dyn/cm2, respectively. 

5. SUMMARY AND CONCLUSIONS 

It is shown that the electrons contribute a term in T2 

to the temperature dependence of the elastic constants 
of metals at low temperatures. The algebraic sign and 
order of magnitude of this temperature dependence are 
determined critically by the electron density distribu­
tion and the shape of the Fermi surface. Representative 
calculations are performed for sodium, copper, alumi­
num, and vanadium. In all these calculations it has been 
assumed that V{T) is equal to 7(0) over the tempera­
ture range considered. This assumption seems justified 
by the results of White27 which show that the thermal-
expansion coefficient for vanadium and most other 
metals investigated is approximately 10~8 deg"1 in the 
temperature range considered in this work. 

The experimental measurements of Alers and Wal­
dorf12 have a sensitivity of one part in 107. From the 
results of Table I it is doubtful that the T2 dependence 
may be observed in copper, but possibly may be ob­
served in sodium and aluminum. From the results for 
vanadium it is probable that the effect will be most 
pronounced for transition metals. It becomes clear that 
measurements such as those performed by Alers and 
Waldorf are valuable for checking the results of energy 
band calculations, or conversely, for providing informa­
tion about the Fermi surface. 
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